Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Sci Rep ; 14(1): 8960, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637599

RESUMEN

Increased temperature and fragmentation of green spaces in urban areas could drive variations in functional traits of insects. Such morphological shifts may occur for sensory systems, which were previously reported to be prone to change with habitat characteristics in non-urban contexts. Here, we measured traits related to the visual and antennal sensory systems in the bees Halictus scabiosae and Osmia cornuta and the wasp Polistes dominula along an urbanisation gradient within Milan (Italy). We hypothesised that fragmentation could filter for better visual properties, and that higher temperature could filter for fewer thermoreceptors and more olfactory hairs. While controlling for body size, results show subtle but appreciable responses to urbanisation in one or more traits in all species, though not always supporting our hypotheses. O. cornuta shows marginally higher ommatidia density and smaller ommatidia diameter (associated with better visual resolution) in more fragmented sites, as well as marginally fewer thermoreceptors in hotter sites, in agreement with our two predictions. On the other hand, H. scabiosae has marginally smaller antennae and P. dominula has smaller eyes at warmer locations, and the wasp also has smaller antennae and 9th flagellomeres in more fragmented areas. Perhaps higher temperatures accelerate development of sensory system at higher speed than the rest of body in these two species. Our results represent the first evidence of urbanisation effects on the visual and antennal sensory systems of bees and wasps and underline how such effects may involve a much broader bouquet of traits then previously observed.


Asunto(s)
Avispas , Abejas , Animales , Avispas/fisiología , Urbanización , Órganos de los Sentidos , Calor , Olfato
2.
Insects ; 15(4)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38667359

RESUMEN

Despite the importance of pollinators to ecosystem functioning and human food production, comprehensive pollinator monitoring data are still lacking across most regions of the world. Policy-makers have recently prioritised the development of large-scale monitoring programmes for pollinators to better understand how populations respond to land use, environmental change and restoration measures in the long term. Designing such a monitoring programme is challenging, partly because it requires both ecological knowledge and advanced knowledge in sampling design. This study aims to develop a conceptual framework to facilitate the spatial sampling design of large-scale surveillance monitoring. The system is designed to detect changes in pollinator species abundances and richness, focusing on temperate agroecosystems. The sampling design needs to be scientifically robust to address questions of agri-environmental policy at the scales of interest. To this end, we followed a six-step procedure as follows: (1) defining the spatial sampling units, (2) defining and delimiting the monitoring area, (3) deciding on the general sampling strategy, (4) determining the sample size, (5) specifying the sampling units per sampling interval, and (6) specifying the pollinator survey plots within each sampling unit. As a case study, we apply this framework to the "Wild bee monitoring in agricultural landscapes of Germany" programme. We suggest this six-step procedure as a conceptual guideline for the spatial sampling design of future large-scale pollinator monitoring initiatives.

3.
Environ Int ; 186: 108608, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38554503

RESUMEN

Bumblebees are among the most important wild bees for pollination of crops and securing wildflower diversity. However, their abundance and diversity have been on a steady decrease in the last decades. One of the most important factors leading to their decline is the frequent use of plant protection products (PPPs) in agriculture, which spread into forests and natural reserves. Mixtures of different PPPs pose a particular threat because of possible synergistic effects. While there is a comparatively large body of studies on the effects of PPPs on honeybees, we still lack data on wild bees. We here investigated the influence of the frequent fungicide Cantus® Gold (boscalid/dimoxystrobin), the neonicotinoid insecticide Mospilan® (acetamiprid) and their combination on bumblebees. Cognitive performance and foraging flights of bumblebees were studied. They are essential for the provisioning and survival of the colony. We introduce a novel method for testing four treatments simultaneously on the same colony, minimizing inter-colony differences. For this, we successfully quartered the colony and moved the queen daily between compartments. Bumblebees appeared astonishingly resilient to the PPPs tested or they have developed mechanisms for detoxification. Neither learning capacity nor flight activity were inhibited by treatment with the single PPPs or their combination.


Asunto(s)
Compuestos de Bifenilo , Fungicidas Industriales , Neonicotinoides , Niacinamida/análogos & derivados , Abejas/efectos de los fármacos , Abejas/fisiología , Animales , Fungicidas Industriales/toxicidad , Estrobilurinas , Insecticidas/toxicidad , Piridinas/toxicidad
4.
Environ Monit Assess ; 196(1): 6, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38049545

RESUMEN

Low diversity of pollinators and the modified composition of functional groups of bees have been proposed as the causes of pollination deficiency in cultivated Cucurbitaceae species. Functional groups of bees are determined by traits, such as body size, nesting site, and social behavior. The presence of bees with specific traits can be differentially affected by agricultural management practices. This work aimed to assess how management types (agroecological and conventional) in Cucurbita maxima var. zapallito crops affect the abundance of bees with different biological traits. The study was conducted on four farms located in horticultural areas of central-eastern Santa Fe province, Argentina. A total of 108 10-min censuses were conducted to record bee species abundance in flowers. The species were assigned to categories for each of the three biological traits. A total of 552 individuals, belonging to 16 bee species, were recorded. Honey bees were more abundant under conventional management, whereas the native bees Eucera fervens and other species were more abundant under agroecological management. Species of the categories analyzed (body size: small, medium, and large; nesting site: above-ground cavities or ground-nesting; and social behavior: solitary or social) were present on farms under both management types. We found that management type affected bees, and their effects differed among bees with specific biological traits. Medium-sized and small bees, ground-nesting bees, and solitary bees were found in greater abundance on agroecological farms than on conventional farms. Our data allowed us to explain the diversity and abundance of bees relative to the management type and biological traits of the species. Implications for insect conservation: This study suggests that incorporating biodiversity-based management strategies might increase abundance and richness of native bees with different biological traits, ensuring the free pollination service they provide and a taxonomically and functionally diverse assemblage.


Asunto(s)
Cucurbita , Humanos , Animales , Abejas , Monitoreo del Ambiente , Biodiversidad , Agricultura , Flores , Polinización
5.
Insects ; 14(11)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37999071

RESUMEN

Pollinators and natural enemies are essential ecosystem service providers influenced by land-use and by interactions between them. However, the understanding of the combined impacts of these factors on pollinator and natural enemy activities and their ultimate effects on plant productivity remains limited. We investigated the effects of local and landscape vegetation characteristics and the presence of herbivorous pests on pollination and biological control services and their combined influence on phytometer seed set. The study was conducted in a Mediterranean agro-ecosystem, encompassing ten shrubland plots spanning a land-use gradient. Within each plot, we placed caged and uncaged potted phytometer plants that were either aphid-infested or aphid-free. We quantified insect flower visitation, aphid predation and parasitism rates, and fruit and seed set. We found scale-dependent responses of pollinators and natural enemies to land-use characteristics. Flower species richness had a positive impact on aphid parasitism rates but a negative effect on pollinator activity. Notably, we found a more pronounced positive effect of natural areas on pollinator activity in aphid-infested compared to aphid-free plants, indicating a potentially critical role of natural habitats in mitigating the adverse effects of aphid infestation on pollination services. These results highlight the complex and interactive effects of land-use on pollinators and natural enemies, with significant implications for plant productivity.

6.
Ecol Evol ; 13(11): e10705, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38020698

RESUMEN

Climate plays a major role in determining where species occur, and when they are active throughout the year. In the face of a changing climate, many species are shifting their ranges poleward. Many species are also shifting their emergence phenology. Wild bees in Great Britain are susceptible to changes in climatic conditions but little is known about historic or potential future spatio-temporal trends of many species. This study utilized a sliding window approach to assess the impacts of climate on bee emergence dates, estimating the best temperature window for predicting emergence dates for 88 species of wild bees. Using a 'middle-of-the-road' (RCP 4.5) and 'worst-case' (RCP 8.5) climate scenario for the period 2070-2079, predictions of future emergence dates were made. In general, the best predicting climate window occurred in the 0-3 months preceding emergence. Across the 40 species that showed a shift in emergence dates in response to a climate window, the mean advance was 13.4 days under RCP 4.5 and 24.9 days under RCP 8.5. Species distribution models (SDMs) were used to predict suitable climate envelopes under historic (1980-1989), current (2010-2019) and future (2070-2079 under RCP 4.5 and RCP 8.5 scenarios) climate conditions. These models predict that the climate envelope for 92% of studied species has increased since the 1980s, and for 97% and 93% of species under RCP 4.5 and RCP 8.5 respectively, this is predicted to continue, due to extension of the northern range boundary. While any range changes will be moderated by habitat availability, it highlights that Great Britain will likely experience northward shifts of bee populations in the future. By combining spatial and temporal trends, this work provides an important step towards informing conservation measures suitable for future climates, directing how interventions can be provided in the right place at the right time.

7.
R Soc Open Sci ; 10(11): 231093, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38026041

RESUMEN

Pollinator diversity and abundance are declining globally. Cropland agriculture and the corresponding use of agricultural pesticides may contribute to these declines, while increased pollinator habitat (flowering plants) can help mitigate them. Here we tested whether the relative effect of wildflower plantings on pollinator diversity and counts were modified by proportion of nearby agricultural land cover and pesticide exposure in 24 conserved grasslands in Iowa, USA. Compared with general grassland conservation practices, wildflower plantings led to only a 5% increase in pollinator diversity and no change in counts regardless of the proportion of cropland agriculture within a 1 km radius. Pollinator diversity increased earlier in the growing season and with per cent flower cover. Unexpectedly, neither insecticide nor total pesticide concentrations on above-ground passive samplers were related to pollinator diversity. However, pollinator community composition was most strongly related to date of sampling, total pesticide concentration, and forb or flower cover. Our results indicate very little difference in pollinator diversity between grassland conservation practices with and without wildflower plantings. Given the relatively high economic costs of wildflower plantings, our research provides initial evidence that investment in general grassland conservation may efficiently conserve pollinator diversity in temperate regions of intensive cropland agriculture.

8.
Ecol Evol ; 13(10): e10640, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37869440

RESUMEN

Characterizing the nutritional needs of wild bee species is an essential step to better understanding bee biology and providing suitable supplemental forage for at-risk species. Here, we aim to characterize the nutritional needs of a model solitary bee species, Osmia cornifrons (Radoszkowski), by using dietary protein-to-lipid ratio (P:L ratio) as a proxy for nutritional niche and niche breadth. We first identified the mean target P:L ratio (~3.02:1) and P:L collection range (0.75-6.26:1) from pollen provisions collected across a variety of sites and time points. We then investigated the P:L tolerance range of larvae by rearing bees in vitro on a variety of diets. Multifloral and single-source pollen diets with P:L ratios within the range of surveyed provisions did not always support larval development, indicating that other dietary components such as plant secondary compounds and micronutrients must also be considered in bee nutritional experiments. Finally, we used pollen metabarcoding to identify pollen from whole larval provisions to understand how much pollen bees used from plants outside of their host plant families to meet their nutritional needs, as well as pollen from individual forager bouts, to observe if bees maintained strict floral constancy or visited multiple plant genera per foraging bout. Whole larval provision surveys revealed a surprising range of host plant pollen use, ranging from ~5% to 70% of host plant pollen per provision. Samples from individual foraging trips contained pollen from multiple genera, suggesting that bees are using some form of foraging decision making. Overall, these results suggest that O. cornifrons have a wide nutritional niche breadth, but while pollen P:L ratio tolerance is broad, a tolerable P:L ratio alone is not enough to create a quality diet for O. cornifrons, and the plant species that make up these diets must also be carefully considered.

9.
Proc Natl Acad Sci U S A ; 120(28): e2212124120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399410

RESUMEN

Agricultural expansion and intensification have boosted global food production but have come at the cost of environmental degradation and biodiversity loss. Biodiversity-friendly farming that boosts ecosystem services, such as pollination and natural pest control, is widely being advocated to maintain and improve agricultural productivity while safeguarding biodiversity. A vast body of evidence showing the agronomic benefits of enhanced ecosystem service delivery represent important incentives to adopt practices enhancing biodiversity. However, the costs of biodiversity-friendly management are rarely taken into account and may represent a major barrier impeding uptake by farmers. Whether and how biodiversity conservation, ecosystem service delivery, and farm profit can go hand in hand is unknown. Here, we quantify the ecological, agronomic, and net economic benefits of biodiversity-friendly farming in an intensive grassland-sunflower system in Southwest France. We found that reducing land-use intensity on agricultural grasslands drastically enhances flower availability and wild bee diversity, including rare species. Biodiversity-friendly management on grasslands furthermore resulted in an up to 17% higher revenue on neighboring sunflower fields through positive effects on pollination service delivery. However, the opportunity costs of reduced grassland forage yields consistently exceeded the economic benefits of enhanced sunflower pollination. Our results highlight that profitability is often a key constraint hampering adoption of biodiversity-based farming and uptake critically depends on society's willingness to pay for associated delivery of public goods such as biodiversity.


Asunto(s)
Ecosistema , Polinización , Abejas , Animales , Granjas , Biodiversidad , Agricultura/métodos , Productos Agrícolas , Conservación de los Recursos Naturales
10.
Glob Chang Biol ; 29(15): 4193-4211, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37173859

RESUMEN

As urbanization continues to increase, it is expected that two-thirds of the human population will reside in cities by 2050. Urbanization fragments and degrades natural landscapes, threatening wildlife including economically important species such as bees. In this study, we employ whole genome sequencing to characterize the population genetics, metagenome and microbiome, and environmental stressors of a common wild bee, Ceratina calcarata. Population genomic analyses revealed the presence of low genetic diversity and elevated levels of inbreeding. Through analyses of isolation by distance, resistance, and environment across urban landscapes, we found that green spaces including shrubs and scrub were the most optimal pathways for bee dispersal, and conservation efforts should focus on preserving these land traits to maintain high connectivity across sites for wild bees. Metagenomic analyses revealed landscape sites exhibiting urban heat island effects, such as high temperatures and development but low precipitation and green space, had the highest taxa alpha diversity across all domains even when isolating for potential pathogens. Notably, the integration of population and metagenomic data showed that reduced connectivity in urban areas is not only correlated with lower relatedness among individuals but is also associated with increased pathogen diversity, exposing vulnerable urban bees to more pathogens. Overall, our combined population and metagenomic approach found significant environmental variation in bee microbiomes and nutritional resources even in the absence of genetic differentiation, as well as enabled the potential early detection of stressors to bee health.


Asunto(s)
Metagenómica , Urbanización , Animales , Abejas/genética , Humanos , Ciudades , Calor , Genética de Población , Ecosistema
11.
PeerJ ; 11: e14699, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36755869

RESUMEN

The spatial heterogeneity of urban landscapes, relatively low agrochemical use, and species-rich floral communities often support a surprising diversity of wild pollinators in cities. However, the management of Western honey bees (Apis mellifera L.) in urban areas may represent a new threat to wild bee communities. Urban beekeeping is commonly perceived as an environmentally friendly practice or a way to combat pollinator declines, when high-density beekeeping operations may actually have a negative influence on native and wild bee populations through floral resource competition and pathogen transmission. On the Island of Montréal, Canada there has been a particularly large increase in beekeeping across the city. Over the years following a large bee diversity survey ending in 2013, there was an influx of almost three thousand honey bee colonies to the city. In this study, we examined the wild bee communities and floral resources across a gradient of honey bee abundances in urban greenspaces in 2020, and compared the bee communities at the same sites before and after the large influx of honey bees. Overall, we found a negative relationship between urban beekeeping, pollen availability, and wild bee species richness. We also found that honey bee abundance had the strongest negative effect on small (inter-tegular span <2.25 mm) wild bee species richness. Small bee species may be at higher risk in areas with abundant honey bee populations as their limited foraging range may reduce their access to floral resources in times of increased competition. Further research on the influence of urban beekeeping on native and wild pollinators, coupled with evidence-based beekeeping regulations, is essential to ensure cities contain sufficient resources to support wild bee diversity alongside managed honey bees.


Asunto(s)
Ecosistema , Flores , Animales , Abejas , Polen , Apicultura , Ciudades
12.
Methods Mol Biol ; 2610: 57-66, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36534281

RESUMEN

Pathogen spillover between honey bees and wild pollinators is a relatively new and exciting field of study. It is known that some viral diseases are a major threat to honey bee health and, thus, the diagnosis and quantification of honey bee viruses in wild pollinators have gained attention. Pathogen spillover from honey bees to wild bees and the consequences of viral replication to their health still need to be investigated. However, finding positive samples to produce standard curves and include positive controls in real-time PCR (qPCR) assays is challenging. Here we describe the use of synthetic DNA sequences of two variants of deformed wing virus (DWV-A and DWV-B), black queen cell virus (BQCV), sacbrood virus (SBV), chronic bee paralysis virus (CBPV), Kashmir bee virus (KBV), acute bee paralysis virus (ABPV), and Israeli acute paralysis virus (IAPV), to construct standard curves for viral quantification, and for their use as positive controls in qPCR assays.


Asunto(s)
Virus ARN , Virosis , Virus , Animales , Abejas , Reacción en Cadena en Tiempo Real de la Polimerasa , Secuencia de Bases
13.
Biodivers Data J ; 11: e114688, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38161490

RESUMEN

Background: Xicotli data is the short name given to the dataset generated within the project framework "Integration of Biodiversity Data for the Management and Conservation of Wild Bee-Plant Interactions in Mexico (2021-2023)", as xicotli is the generic word for a bee in Nahuatl. The team comprised eco-informaticians, ecologists and taxonomists of both native bees and flora. The generated dataset contains so far 4,532 curated records of the plants, which are potential hosts of species of three focal families of bees native to Mexico: Apidae, Halictidae and Megachilidae and morphological and ecological data of the plant-bee interactions. This dataset was integrated and mobilised from citizen observations available at naturalista.mx (iNat), which were compiled through the iNaturalist project. New information: The new information obtained with the Xicotli data project was: Taxonomic information about bee species curated by taxonomists based on the information contained in iNaturalist;Taxonomic identification of the host plants by a botanist from the photos compiled by the Xicotli Data project;Data on the ecomorphological traits of bees and plants based on expert knowledge and literature. All the data were integrated into the Xicotli Data Project via the creation of new "observation fields". The visibility of the information originally contained in iNaturalist was maximized and can be consulted directly on the iNaturalist platform.

14.
Oecologia ; 200(1-2): 145-158, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36053349

RESUMEN

Understanding the causes of morphological variation of organisms along climatic gradients has been a central challenge in ecological research. We studied the variation of community weighted mean (CWM) and two functional diversity metrics (Rao-Q and functional richness) computed for five morphological traits of wild bees (Hymenoptera: Apoidea) related to thermal performance (namely body size, relative appendage length and hairiness), at community and interspecific levels, along an elevation gradient in a Mexical-type scrubland. At the community level we found a decreasing CWM of body size pattern with increasing elevation which is consistent with the species-energy theory (and contrary to Bergmann's rule). We also found an increase in the CWM of relative tibia length, which is contrary to Allen's rule. Additionally, we found an increase in the CWM of relative hair length towards high levels of elevation, which would be consistent with the hypothesis that hairiness plays an important role as thermal insulation. We found that functional diversity was larger at low elevations with respect to high elevation for body size and hair length, which could imply that highland communities were more sensitive towards environmental changes than lowland communities. Overall, at intraspecific level, most of species showed no pattern for any of the traits along the elevation gradient. Future research should provide further evidence on the possible behavioral or physiological mechanisms behind it.


Asunto(s)
Tamaño Corporal , Animales , Abejas , Tamaño Corporal/fisiología , Fenotipo
15.
Ecol Evol ; 12(8): e9190, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35983174

RESUMEN

Wild bees form diverse communities that pollinate plants in both native and agricultural ecosystems making them both ecologically and economically important. The growing evidence of bee declines has sparked increased interest in monitoring bee community and population dynamics using standardized methods. Here, we studied the dynamics of bee biodiversity within and across years by monitoring wild bees adjacent to four apple orchard locations in Southern Pennsylvania, USA. We collected bees using passive Blue Vane traps continuously from April to October for 6 years (2014-2019) amassing over 26,000 bees representing 144 species. We quantified total abundance, richness, diversity, composition, and phylogenetic structure. There were large seasonal changes in all measures of biodiversity with month explaining an average of 72% of the variation in our models. Changes over time were less dramatic with years explaining an average of 44% of the variation in biodiversity metrics. We found declines in all measures of biodiversity especially in the last 3 years, though additional years of sampling are needed to say if changes over time are part of a larger trend. Analyses of population dynamics over time for the 40 most abundant species indicate that about one third of species showed at least some evidence for declines in abundance. Bee family explained variation in species-level seasonal patterns but we found no consistent family-level patterns in declines, though bumble bees and sweat bees were groups that declined the most. Overall, our results show that season-wide standardized sampling across multiple years can reveal nuanced patterns in bee biodiversity, phenological patterns of bees, and population trends over time of many co-occurring species. These datasets could be used to quantify the relative effects that different aspects of environmental change have on bee communities and to help identify species of conservation concern.

16.
Front Cell Infect Microbiol ; 12: 907489, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35846743

RESUMEN

Diseases contribute to the decline of pollinator populations, which may be aggravated by the interspecific transmission of honey bee pests and pathogens. Flowers increase the risk of transmission, as they expose the pollinators to infections during the foraging activity. In this study, both the prevalence and abundance of 21 honey bee pathogens (11 viruses, 4 bacteria, 3 fungi, and 3 trypanosomatids) were assessed in the flower-visiting entomofauna sampled from March to September 2021 in seven sites in the two North-Italian regions, Emilia-Romagna and Piedmont. A total of 1,028 specimens were collected, identified, and analysed. Of the twenty-one pathogens that were searched for, only thirteen were detected. Altogether, the prevalence of the positive individuals reached 63.9%, with Nosema ceranae, deformed wing virus (DWV), and chronic bee paralysis virus (CBPV) as the most prevalent pathogens. In general, the pathogen abundance averaged 5.15 * 106 copies, with CBPV, N. ceranae, and black queen cell virus (BQCV) as the most abundant pathogens, with 8.63, 1.58, and 0.48 * 107 copies, respectively. All the detected viruses were found to be replicative. The sequence analysis indicated that the same genetic variant was circulating in a specific site or region, suggesting that interspecific transmission events among honey bees and wild pollinators are possible. Frequently, N. ceranae and DWV were found to co-infect the same individual. The circulation of honey bee pathogens in wild pollinators was never investigated before in Italy. Our study resulted in the unprecedented detection of 72 wild pollinator species as potential hosts of honey bee pathogens. Those results encourage the implementation of monitoring actions aiming to improve our understanding of the environmental implications of such interspecific transmission events, which is pivotal to embracing a One Health approach to pollinators' welfare.


Asunto(s)
Virus ARN , Virus , Animales , Abejas , Hongos , Italia/epidemiología , Virus ARN/genética
17.
Ecol Evol ; 12(6): e9014, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35784045

RESUMEN

The viability of wild bee populations and the pollination services that they provide are driven by the availability of food resources during their activity period and within the surroundings of their nesting sites. Changes in climate and land use influence the availability of these resources and are major threats to declining bee populations. Because wild bees may be vulnerable to interactions between these threats, spatially explicit models of population dynamics that capture how bee populations jointly respond to land use at a landscape scale and weather are needed. Here, we developed a spatially and temporally explicit theoretical model of wild bee populations aiming for a middle ground between the existing mapping of visitation rates using foraging equations and more refined agent-based modeling. The model is developed for Bombus sp. and captures within-season colony dynamics. The model describes mechanistically foraging at the colony level and temporal population dynamics for an average colony at the landscape level. Stages in population dynamics are temperature-dependent triggered by a theoretical generalized seasonal progression, which can be informed by growing degree days. The purpose of the LandscapePhenoBee model is to evaluate the impact of system changes and within-season variability in resources on bee population sizes and crop visitation rates. In a simulation study, we used the model to evaluate the impact of the shortage of food resources in the landscape arising from extreme drought events in different types of landscapes (ranging from different proportions of semi-natural habitats and early and late flowering crops) on bumblebee populations.

18.
Int J Parasitol Parasites Wildl ; 18: 232-243, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35800107

RESUMEN

There is clear evidence for wild insect declines globally. Habitat loss, climate change, pests, pathogens and environmental pollution have all been shown to cause detrimental effects on insects. However, interactive effects between these stressors may be the key to understanding reported declines. Here, we review the literature on pesticide and pathogen interactions for wild bees, identify knowledge gaps, and suggest avenues for future research fostering mitigation of the observed declines. The limited studies available suggest that effects of pesticides most likely override effects of pathogens. Bees feeding on flowers and building sheltered nests, are likely less adapted to toxins compared to other insects, which potential susceptibility is enhanced by the reduced number of genes encoding detoxifying enzymes compared with other insect species. However, to date all 10 studies using a fully-crossed design have been conducted in the laboratory on social bees using Crithidia spp. or Nosema spp., identifying an urgent need to test solitary bees and other pathogens. Similarly, since laboratory studies do not necessarily reflect field conditions, semi-field and field studies are essential if we are to understand these interactions and their potential effects in the real-world. In conclusion, there is a clear need for empirical (semi-)field studies on a range of pesticides, pathogens, and insect species to better understand the pathways and mechanisms underlying their potential interactions, in particular their relevance for insect fitness and population dynamics. Such data are indispensable to drive forward robust modelling of interactive effects in different environmental settings and foster predictive science. This will enable pesticide and pathogen interactions to be put into the context of other stressors more broadly, evaluating their relative importance in driving the observed declines of wild bees and other insects. Ultimately, this will enable the development of more effective mitigation measures to protect bees and the ecosystem services they supply.

19.
Environ Int ; 165: 107311, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35714526

RESUMEN

Fungicides account for more than 35% of the global pesticide market and their use is predicted to increase in the future. While fungicides are commonly applied during bloom when bees are likely foraging on crops, whether real-world exposure to these chemicals - alone or in combination with other stressors - constitutes a threat to the health of bees is still the subject of great uncertainty. The first step in estimating the risks of exposure to fungicides for bees is to understand how and to what extent bees are exposed to these active ingredients. Here we review the current knowledge that exists about exposure to fungicides that bees experience in the field, and link quantitative data on exposure to acute and chronic risk of lethal endpoints for honey bees (Apis mellifera). From the 702 publications we screened, 76 studies contained quantitative data on residue detections in honey bee matrices, and a further 47 provided qualitative information about exposure for a range of bee taxa through various routes. We compiled data for 90 fungicides and metabolites that have been detected in honey, beebread, pollen, beeswax, and the bodies of honey bees. The risks posed to honey bees by fungicide residues was estimated through the EPA Risk Quotient (RQ) approach. Based on residue concentrations detected in honey and pollen/beebread, none of the reported fungicides exceeded the levels of concern (LOC) set by regulatory agencies for acute risk, while 3 and 12 fungicides exceeded the European Food Safety Authority (EFSA) chronic LOC for honey bees and wild bees, respectively. When considering exposure to all bees, fungicides of most concern include many broad-spectrum systemic fungicides, as well as the widely used broad-spectrum contact fungicide chlorothalonil. In addition to providing a detailed overview of the frequency and extent of fungicide residue detections in the bee environment, we identified important research gaps and suggest future directions to move towards a more comprehensive understanding and mitigation of the risks of exposure to fungicides for bees, including synergistic risks of co-exposure to fungicides and other pesticides or pathogens.


Asunto(s)
Fungicidas Industriales , Plaguicidas , Animales , Abejas , Fungicidas Industriales/análisis , Fungicidas Industriales/toxicidad , Plaguicidas/análisis , Polen/química
20.
Oecologia ; 199(1): 165-179, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35505250

RESUMEN

Cities are considered important refuges for insect pollinators. This has been shown repeatedly for wild bees, but may also be true for other diverse taxa such as hoverflies. However, our understanding of how urban environmental filters shape pollinator species communities and their traits is still limited. Here, we used wild bee and hoverfly species, communities and their functional traits to illustrate how environmental filters on the landscape and local scale shape urban species pools. The multi-taxon approach revealed that environmental filtering predominantly occurred at the landscape scale as urbanisation and 3D connectivity significantly structured the taxonomic and functional composition of wild bee (sociality, nesting, diet, body size) and hoverfly (larval food type, migratory status) communities. We identified urban winners and losers attributed to taxon-specific responses to urban filters. Our results suggest that insect pollinator conservation needs to take place primarily at the landscape level while considering species traits, especially by increasing habitat connectivity.


Asunto(s)
Polinización , Urbanización , Animales , Abejas , Ciudades , Ecosistema , Fenotipo , Polinización/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...